Advanced Control Strategies Based on Reinforcement Learning for Linear Actuators

Damian Tamburi, MSc. (dtamburi@stataisolutions.com)
Cristian Napole, PhD. (cnapole@stataisolutions.com)

Scope

The objective is to develop and evaluate a controller based on Reinforcement Learning for a second-order dynamic model with application in linear actuators and compare it with a classical PID control method.

Supported by

DEPARTAMENTO DE INDUSTRIA, TRANSICIÓN ENERGÉTICA Y SOSTENIBILIDAD

Index

- Application example.
- Reinforcement Learning Algorithms.
- Controllers Implementation.
- Conclusions and Future Activities.

Application Example

Application Example

Stewart Platform

6X Linear Actuators

Reinforcement Learning Algorithms

Reinforcement Learning Algorithms

Uses Cases

Deep Q Learning: Discrete Actions.

On policy Hybrid

PPO/ DDPG:

Continuous Actions.

Reinforcement Learning Algorithms

Basic Reinforcement Learning

Reinforcement Learning environment.

$$m\ddot{x} + b\dot{x} + kx = V$$
$$V = K.F$$

State Space

- Position
- Velocity
- Error = Position goal
- Cumulative error

Action Space:

• V[-1,1]

[-1 m, 1 m] randomly each episode

if (|x - goal| < 0.001 and |Velocity| < 0.001) OR current step \geq max steps Done:

Parameter	Value	Description
K	300 N	Constant K
5	1.1	Damping Factor
k	100 N/m	Spring Constant
m	1 kg	Mass
- REE		8,03802000

$$\zeta = \frac{b}{2\sqrt{km}}$$

PID Tuning

Parameter	Value
Setpoint Step	0.4 m
Initial Distance (x ₀)	0 m
Initial Speed (vo)	0 m/s
Step Time	0.01 s
Number of Steps	100
Simulation Time	1 s
Proportional Gain (Kp)	2.9
Integral Gain (K_l)	10
Derivative Gain (K _d)	0.0125

Reinforcement Learning Training configuration.

A2C

T (steps)

Learning

Rate

Batch Size

Parameter	Parameters Phase 1	Parameters Phase 2
rank	4	4
net_arch	[32, 32, 16, 8]	[32, 32, 16, 8]
Optimizer	Adam	Adam
activation_fn	th.nn.Tanh	th.nn.Tanh
dropout_p	0	0
use_batch_norm	False	False
norm_obs	True	True
norm_reward	True	True
gamma	0.99	0.99
n_steps	256	512
ent_coef	0.1	0.1
learning_rate	0.000025	0.000025
vf_coef	0.5	0.5
max_grad_norm	0.5	0.5
gae_lambda	0.95	0.95
n_epochs	4	4
batch_size	64	128
clip_range	0.2	0.2

Reinforcement Learning Phase 2.

-10000

Other Hyperparameters

Episodes

80

Result Comparison

PID

Absolute Error ≈ 0.02m

Absolute Error ≈ 0.0025m

Dynamic Noise Analysis.

PID

[-0.1K, 0.1K] with a 20% of probability each time step.

Action Peaks

Absolute Error ≈ 0.025m

$$\frac{dv}{dt} = \frac{KF - bv - kx + \text{External Force}}{m}$$

Absolute Error ≈ 0.008m

Conclusions and Future Activities

Conclusions and Future Activities

Conclusions

- Reinforcement Learning algorithms are constantly evolving, improving control in continuous robotic environments.
- A reinforcement learning environment was designed for a second-order dynamic model using the Gymnasium library.
- A PID controller was implemented and tuned using the Ziegler-Nichols method, then manually readjusted.
- A PPO model was trained in 2 phases, with adaptive rewards...
- Sinusoidal references were applied to compare both controllers showing how PPO outperformed PID in terms of absolute errors and amplitude action reduction .
- Although the reinforcement learning controller was more effective, its training is complex and computationally expensive compared to PID.
- Despite its complexity, these technologies have great potential to complement traditional methods in engineering. The reinforcement learning controller can adapt to nonlinear systems and changing conditions.

Conclusions and Future Activities

Future Activities

- Improve the environment by changing parameters such as mass, spring, and damper coefficients, emulating classic active impedance controls, and adding disturbances to simulate failures and changing conditions.
- To validate the behavior of the trained Neural Network, it is necessary to conduct experimental tests in a physical environment and evaluate its real-time viability.
- Automating hyperparameter tuning is necessary to improve results and simplify the process.
- Fine-tune controllers on more complex signals, such as triangular ones.

Thanks!

https://stataisolutions.com/

Contact us:

dtamburi@stataisolutions.com cnapole@stataisolutions.com