Advanced Control Strategies Based on
Reinforcement Learning for Linear Actuators

Stat.Al

Damian Tamburi, MSc. (dtamburi@stataisolutions.com)
Cristian Napole, PhD. (cnapole@stataisolutions.com)

The objective is to develop and evaluate a controller
based on Reinforcement Learning for a second-
order dynamic model with application in linear

actuators and compare it with a classical PID control
method.

Supported by

GRUPO o
B4\ | BIC ARABA SPrI D Conmia s’
UP!I EUSKADI oA

Application example.
Reinforcement Learning Algorithms.

Controllers Implementation.
Conclusions and Future Activities.

Application Example
4

Application Example

Stewart Platform

Mobile platform with 6 DOF

6X Linear
Actuators

Fixed Base

Reinforcement
Learning Algorithms

Reinforcement Learning Algorithms %

Uses Cases

off policy \[Deep Q Learning: J
Discrete Actions.

On policy Hybrid

S

PPO/ DDPG:
Continuous Actions.

Reinforcement Learning Algorithms @

Basic Reinforcement Learning

Experience = {(s¢, a¢, I't, St41 + extrat)}'tiﬂ

e Off Policy
* On Policy

G; = Z‘J" Fevk+1

Critic e
R,
. : R f
i Sr+1 i
vel®) = E:|G;|5] = Environment]4—

[Markov Process]

Controller
Implementation

Controller Implementation

Reinforcement Learning environment. @ G -
ymnasium (T
mi+bx+kx=V

- L V=K.F
K‘State Space \

Action Space:
Position
Velocity e VI[-1,1]
Error = Position - goal

Cumulative error)

{ [-1 m, 1 m] randomly each episode]

Done:[if (]x—goal| < 0.001 and [Velocity| < 0.001)]0R[current step > max steps]

Parameter Value Description
K 300N Constant K

& 1.1 Damping Factor
k 100 N/m Spring Constant
m 1 kg Mass

Controller Implementation

PID Tuning

Feedback Variable

Parameter
Satpoint Step
Initial Distance (xqg)
Initial Speed {vo)
Step Time
Mumber of Steps
Simulation Time
Proportional Gain (K)
integral Gain (X,)
Dierivative Gain (K z)

Velocity [m/s]

Control Action
e f
bS

o
~

=
=

Controller Implementation

Reinforcement Learning Training configuration.

Parameter Parameters Phase 1 Parameters Phase 2 (_/— A2C
rank 4 4

net_arch [32, 32, 16, 8] [32, 32, 16, 8]

Optimizer Adam Adam

activation_fn th.nn.Tanh th.nn.Tanh

dropout_p 0 0

use_batch_norm

norm_obs True

norm_reward True

gamma 0.99

n_steps 256 512
T T (steps)

ent_coef 0.1 01
learning_rate 0.000025 0.000025

vE _coef 0.5 0.5
max_grad_norm 0.5 0.5 Lea rning

gae_lambda 0.95 0.95 Rate

n_epochs 4 4

batch_size 64
clip_range 0.2 : (\ .
Batch Size

Input 32 32 16
Layer Neurons Neurons Neurons

Position —

. .
Velocity — (1307
Error — (0 :‘J‘s

Cumulative "
Error

8
Neurons

Controller Implementation Control Action Oscillation.

Reinforcement Learning Phase 1.

[
024

£ 041
P T b ot S T o D

2 |X — goal
max(|goall, 0.01)

-0.81—

Reward Function.

Controller Implementation

Reinforcement Learning Phase 2.

— PrESIION

/—> Reward Function.

|x — goall

X —c2 X |action — previous action|
max(|goall,0.01)

| Il Range (Min-Max)
—— Average Rewards

T T
] 20

Controller Implementation

Other Hyperparameters Simple Neural Network 32 16 8

I |

I Range (Min-Max) Il Range (Min-Max)

1+ —— Average Rewards | —— Average Rewards

I 1 1 I

T T T T

0 20 40 60 0 20 40 60
Episodes Episodes

Learning Rate

increasing to 0.0025 / Simple Neural Network & 16 32

Il Range (Min-Max)
| —— Average Rewards
I I

T T

0 20 40

Episodes 1 5

Controller Implementation

Result Comparison

—— Position
—-=- Reference

~

—— Position
—=~ Reference

Position [m]
Control Action

Position [m]
Control Action
°
5

4

06 | 1 ! | I 1 1
00 05 10 15 20 25 30 35 40 45 50 00 05 10 15 20 25 30 35 40 45 50

25 25 Time [s] Time [s]
Time [s] Time [s]

Velocity [m/s]
Velocity [m/s]

2‘5 2‘5 00 05 10 15 20 25 1 ¥ . 00 05 10 15 20 25
Time [s] Time [s] Time [s] Time [s]

Absolute Error = 0.02m Absolute Error = 0.0025m

Controller Implementation

Dynamic Noise Analysis.

Action Peaks
RL

—— Position — Position Actim
-~ Reference —-~ Reference p \ | T .

e

Control Action

£ 5 £

< g 5

P

s < &

g 00 5 Z
= o]

& § I

25 30 35 40 45 50 . 15 20 25 30 35

25 30 35 40 45 50 = 20 25 30 Time [s] Time [s]

Time [s] Time [s]

Velocity [m/s]
Velocity [mis]

[-0.1K. 0.1K]
with a 20% of probability
each time step. _ ! ! !

25 30 35 40 45 50 4 20 25 30 35 40 45 50 T T
Time [s] Time [s] ime [s] ime [s]

Absolute Error = 0.025m _
dv KF— by — kx+External Force Absolute Error = 0.008m

dr m

17

Conclusions and
Future Activities

Conclusions and Future Activities

Conclusions

Reinforcement Learning algorithms are constantly evolving, improving control in continuous robotic environments.

A reinforcement learning environment was designed for a second-order dynamic model using the Gymnasium library.
A P1D controller was implemented and tuned using the Ziegler-Nichols method, then manually readjusted.

A PPO model was trained in 2 phases , with adaptive rewards..

Sinusoidal references were applied to compare both controllers showing how PPO outperformed PID in terms of absolute errors and
amplitude action reduction .

Although the reinforcement learning controller was more effective, its training is complex and computationally expensive compared to
PID.

Despite its complexity, these technologies have great potential to complement traditional methods in engineering. The reinforcement
learning controller can adapt to nonlinear systems and changing conditions.

Conclusions and Future Activities

Future Activities

Improve the environment by changing parameters such as mass, spring, and damper coefficients, emulating classic active impedance
controls, and adding disturbances to simulate failures and changing conditions.

To validate the behavior of the trained Neural Network, it is necessary to conduct experimental tests in a physical environment and
evaluate its real-time viability.

Automating hyperparameter tuning is necessary to improve results and simplify the process.

Fine-tune controllers on more complex signals, such as triangular ones.

_ . Contact us:
https://stataisolutions.com/ dtamburi@stataisolutions.com

cnapole@stataisolutions.com

