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The objective is to develop and evaluate a controller 
based on Reinforcement Learning for a second-
order dynamic model with application in linear 
actuators and compare it with a classical PID control 
method.

Scope
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Supported by



• Application example.
• Reinforcement Learning Algorithms.
• Controllers Implementation.
• Conclusions and Future Activities.
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Application Example



Mobile platform with 6 DOF

5

Application Example

Stewart Platform

6X Linear 
Actuators

Fixed Base



Reinforcement 
Learning Algorithms
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Deep Q Learning:
Discrete Actions.

PPO/ DDPG:
Continuous Actions.

On policy Hybrid

off policy
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Reinforcement Learning Algorithms

Uses Cases



Algoritmos de aprendizaje por refuerzo.

•  Off Policy
•  On Policy

RL= Reinforcement Learning.

Markov Process
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Reinforcement Learning Algorithms

Basic Reinforcement Learning

Actor

Critic



Controller 
Implementation
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Mecánica de la plataforma Stewart.
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Controller Implementation

Reinforcement Learning environment.

State Space

• Position
• Velocity
• Error = Position - goal
• Cumulative error

Action Space:

• V [-1 , 1 ]

[-1 m, 1 m] randomly each episode
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Controller Implementation

PID Tuning



Reinforcement Learning Training configuration.
Stable Baseline 3

A2C
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Controller Implementation

Learning 
Rate

Batch Size

T (steps)



End of Phase 1

Control Action Oscillation.
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Controller Implementation

Reinforcement Learning Phase 1.

Reward Function.



End of Phase 2.
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Controller Implementation

Reinforcement Learning Phase 2.

Reward Function.



Simple Neural Network 8_16_32

Simple Neural Network 32_16_8

Learning Rate 
increasing to 0.0025
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Controller Implementation

Other Hyperparameters



Absolute Error ≈ 0.0025m Absolute Error ≈ 0.02m 
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Controller Implementation

Result Comparison

PID RL 



Absolute Error ≈ 0.008m Absolute Error ≈ 0.025m 

PID RL 

17

Controller Implementation

Dynamic Noise Analysis.

Action Peaks



Conclusions and 
Future Activities
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• Reinforcement Learning algorithms are constantly evolving, improving control in continuous robotic environments.
• A reinforcement learning environment was designed for a second-order dynamic model using the Gymnasium library.
• A PID controller was implemented and tuned using the Ziegler-Nichols method, then manually readjusted.
• A PPO model was trained in 2 phases , with adaptive rewards..
• Sinusoidal references were applied to compare both controllers showing how PPO outperformed PID in terms of absolute errors and 

amplitude action reduction .
• Although the reinforcement learning controller was more effective, its training is complex and computationally expensive compared to 

PID.
• Despite its complexity, these technologies have great potential to complement traditional methods in engineering. The reinforcement 

learning controller can adapt to nonlinear systems and changing conditions.
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Conclusions and Future Activities

Conclusions



• Improve the environment by changing parameters such as mass, spring, and damper coefficients, emulating classic active impedance 
controls, and adding disturbances to simulate failures and changing conditions.

• To validate the behavior of the trained Neural Network, it is necessary to conduct experimental tests in a physical environment and 
evaluate its real-time viability.

• Automating hyperparameter tuning is necessary to improve results and simplify the process.
• Fine-tune controllers on more complex signals, such as triangular ones.
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Conclusions and Future Activities

Future Activities



Thanks!
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Contact us:
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