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The objective is to develop and evaluate a controller
based on Reinforcement Learning for a second-
order dynamic model with application in linear

actuators and compare it with a classical PID control
method.
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Application Example

Stewart Platform

Mobile platform with 6 DOF

6X Linear
Actuators

Fixed Base
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Reinforcement Learning Algorithms %

Uses Cases

off policy \[ Deep Q Learning: J
Discrete Actions.

On policy Hybrid
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PPO/ DDPG:
Continuous Actions.




Reinforcement Learning Algorithms @

Basic Reinforcement Learning
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Controller Implementation

Reinforcement Learning environment. @ G -
ymnasium ( T
mi+bx+kx=V

- L V=K.F
K‘State Space \

Action Space:
Position
Velocity e VI[-1,1]
Error = Position - goal

Cumulative error )

{ [-1 m, 1 m] randomly each episode ]

Done:[ if (]x—goal| < 0.001 and [Velocity| < 0.001)]0R[current step > max steps]

Parameter  Value Description
K 300N Constant K

& 1.1 Damping Factor
k 100 N/m  Spring Constant
m 1 kg Mass




Controller Implementation

PID Tuning

Feedback Variable

Parameter
Satpoint Step
Initial Distance (xqg)
Initial Speed {vo)
Step Time
Mumber of Steps
Simulation Time
Proportional Gain (K )
integral Gain (X,)
Dierivative Gain (K z)

Velocity [m/s]
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Controller Implementation

Reinforcement Learning Training configuration.

Parameter Parameters Phase 1 Parameters Phase 2 (_/— A2C
rank 4 4

net_arch [32, 32, 16, 8] [32, 32, 16, 8]

Optimizer Adam Adam

activation_fn th.nn.Tanh th.nn.Tanh

dropout_p 0 0

use_batch_norm

norm_obs True

norm_reward True

gamma 0.99

n_steps 256 512
T T (steps)

ent_coef 0.1 01
learning_rate 0.000025 0.000025

vE _coef 0.5 0.5
max_grad_norm 0.5 0.5 Lea rning

gae_lambda 0.95 0.95 Rate

n_epochs 4 4

batch_size 64
clip_range 0.2 : (\ .
Batch Size

Input 32 32 16
Layer Neurons  Neurons  Neurons

Position —

. .
Velocity — (1307
Error — (0 :‘J‘s

Cumulative "
Error

8
Neurons




Controller Implementation Control Action Oscillation.

Reinforcement Learning Phase 1.
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Controller Implementation

Reinforcement Learning Phase 2.
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Controller Implementation

Other Hyperparameters Simple Neural Network 32 16 8

I |
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Controller Implementation

Result Comparison
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Controller Implementation

Dynamic Noise Analysis.

Action Peaks
RL
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Conclusions and Future Activities

Conclusions

Reinforcement Learning algorithms are constantly evolving, improving control in continuous robotic environments.

A reinforcement learning environment was designed for a second-order dynamic model using the Gymnasium library.
A P1D controller was implemented and tuned using the Ziegler-Nichols method, then manually readjusted.

A PPO model was trained in 2 phases , with adaptive rewards..

Sinusoidal references were applied to compare both controllers showing how PPO outperformed PID in terms of absolute errors and
amplitude action reduction .

Although the reinforcement learning controller was more effective, its training is complex and computationally expensive compared to
PID.

Despite its complexity, these technologies have great potential to complement traditional methods in engineering. The reinforcement
learning controller can adapt to nonlinear systems and changing conditions.




Conclusions and Future Activities

Future Activities

Improve the environment by changing parameters such as mass, spring, and damper coefficients, emulating classic active impedance
controls, and adding disturbances to simulate failures and changing conditions.

To validate the behavior of the trained Neural Network, it is necessary to conduct experimental tests in a physical environment and
evaluate its real-time viability.

Automating hyperparameter tuning is necessary to improve results and simplify the process.

Fine-tune controllers on more complex signals, such as triangular ones.
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